For this week's TWIST (This week in infrastructure systems) post, I want to do things just a bit differently and focus on a topic that is crucial for any infrastructure system: uncertainty framing.
Of course, it is very difficult to agree on how to define uncertainty, and once it's defined, it can be difficult to select robust tools for managing the types of uncertainties we see in infrastructure systems. Since infrastructures are characterized by long life cycles, large geographic and demographic scope, and substantial interconnections within and between lifeline systems, one wonders how any problems are selected for analysis. The web of intricacies faced by analysts and policy makers can be intractable, and the ways that the unknowns influence the likelihoods of the possible consequences makes every choice high-stakes. Some professionals call these problems "wicked," and prefer to "muddle-through" them, take a garbage can approach, or just admit that optimal solutions are probably not possible and accept the best feasible option--to our knowledge--at the time. Others call these "deep uncertainties" and even wonder whether resilience analysis is more appropriate than risk analysis for infrastructure systems.
However you choose to sort all that out, this issue is of critical importance to infrastructure enthusiasts today. In the US, we face a crisis of governance, in which the public trusts neither government nor experts, the center no longer holds--making it impossible to provide legislative/political stability for public engagement over the scientific debates, and our most important issues are fraught with uncertainties that make it impossible to provide an unequivocally recommended course of action. Of course, infrastructure is impossible without both strong governance and strong science (or trans-science, if you prefer). With that in mind, two articles stood out from Water Resources Research this week:
- Rival Framings: A Framework for Discovering how Problem Formulation Uncertainties Shape Risk Management Tradeoffs in Water Resources Systems. In this paper, Quinn et al. explore how rival problem (read: uncertainty) framing could lead to unintended consequences as a result of inherent bias in the selected formulation. Of course, this is unavoidable for even modest problems in critical infrastructure systems, and so they provide some guidance for carefully exploring the possible consequences that can be foreseen under alternative problem formulations.
- Towards best practice framing of uncertainty in scientific publications: a review of Water Resources Research abstracts. In this paper, Guillaume et al. describe how awareness of uncertainty is addressed within WRR abstracts/papers. They develop an uncertainty framing taxonomy that is responsive to five core questions: "Is the conclusion ready to be used?"; "What limitations are there on how the conclusion can be used?"; "How certain is the author that the conclusion is true?"; "How thoroughly has the issue been examined?"; and, "Is the conclusion consistent with the reader’s prior knowledge?". Of course, as the authors acknowledge, the study of uncertainty framing is inter-disciplinary, and achieving an uncertainty framing that is responsive to these questions is an art in itself.
Uncertainty, to me, is both fearsome and beautiful. I hope these two articles, or some of the other links shared, provide some useful thoughts for managing uncertainty in your own study or management of infrastructure systems.